Adjoint polynomials of bridge-path and bridge-cycle graphs and Chebyshev polynomials
نویسنده
چکیده
The chromatic polynomial of a simple graph G with n > 0 vertices is a polynomial ∑n k=1 αk(G)x(x− 1) · · · (x−k+1) of degree n, where αk(G) is the number of k-independent partitions of G for all k. The adjoint polynomial of G is defined to be ∑n k=1 αk(G)x , where G is the complement of G. We find explicit formulas for the adjoint polynomials of the bridge-path and bridge-cycle graphs. Consequence, we find the zeros of the adjoint polynomials of several families of graphs.
منابع مشابه
Chebyshev diagrams for two-bridge knots
We show that every two-bridge knot K of crossing number N admits a polynomial parametrization x = T3(t), y = Tb(t), z = C(t) where Tk(t) are the Chebyshev polynomials and b + degC = 3N . If C(t) = Tc(t) is a Chebyshev polynomial, we call such a knot a harmonic knot. We give the classification of harmonic knots for a ≤ 3. Most results are derived from continued fractions and their matrix represe...
متن کاملA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملSolving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method
In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 311 شماره
صفحات -
تاریخ انتشار 2011